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Abstract
After making the ‘Langer transformation’, r = ex, ψ(r) = ex/2u(x),
Langer found the first-order JWKB hydrogen radial wavefunction to be as
if the centrifugal potential were h̄2(l + 1/2)2/(2r2), thereby ‘justifying’ the
substitution suggested by Kramers and known to get, in first order, the correct
rl+1 behavior at the origin, the correct phase shift and the exact energy levels.
There have been many extensions of the Kramers–Langer substitution: to get
the exact origin behavior at any pre-specified higher order; to show that no
substitution is necessary at infinite order; to replace h̄2l(l + 1) by L2 + h̄L, with
L set equal to lh̄ at the end. Recently, it was discovered that Langer’s JWKB
solution in x was exactly equivalent to a JWKB solution in r for r−1/2ψ(r):
namely the Langer transformation was irrelevant. How can there be many
seemingly incompatible JWKB expansions to solve one equation? The key is
the ambiguous treatment of h̄: in the radial kinetic energy, h̄ is the expansion
parameter; in the centrifugal potential, h̄ is implicit, passive and not expanded.
By designating the implicit h̄i by its own symbol, one sees immediately how the
different JWKB expansions correspond to different partitions of the centrifugal
potential between expansion h̄ and implicit h̄i and therefore solve different
equations. The different expansions represent the same physical solution only
when h̄i = h̄. Moreover, in the two-h̄ notation, ‘the generalization’ of the
Kramers–Langer substitution is made transparently simple:

h̄2l(l + 1) → h̄2
i (l + 1/2)2 − h̄2/4.

That is, the implicit h̄2
i

/
4 that completes the square is compensated by the

expansion −h̄2/4 that modifies the second-order JWKB wavefunction directly
and higher orders indirectly.
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1. Introduction

In the abstract of his influential 1937 Physical Review paper [1], Langer attacked the Jeffreys–
Wentzel–Kramers–Brillouin (JWKB) analysis of the radial wave equation as ‘uncritical and
in error . . . . When correctly applied the JWKB theory yields the formulas which have been
found to be called for on other grounds’. Langer was justifying the substitution empirically
suggested by Kramers [2], to replace l(l + 1) by

(
l + 1

2

)2
in the centrifugal potential, one

consequence of which was to convert the behavior of the JWKB wavefunction at the origin
from r

1
2 +[l(l+1)]1/2

to the rl+1 of the exact wavefunction [3]. Langer’s ‘correct application’ of
the JWKB theory was based on the transformation, r = ex, ψ(r) = ex/2u(x), which moved
the origin to −∞ and eliminated the second-order pole. The first-order (with respect to h̄)
x formulas turned out to be equivalent to first-order r formulas with l(l + 1) replaced by(
l + 1

2

)2
. In this ‘correct-in-first-order’ sense, Langer justified Kramers’ substitution, which

today is often called the ‘Langer substitution’ or ‘Langer modification’ or ‘Langer correction’
or ‘Kramers–Langer . . . ’.

To see how Langer’s transformation might further modify the centrifugal potential beyond
first order, Krieger and Rosenzweig [4] in 1967 pushed Langer’s x solution to third order. But
on transformation back to r, they concluded negatively that ‘there is no effective potential [in
the r variable] . . . which will give rise to the correct result . . . ’.

Focussing on the wavefunction at the origin and not on Langer’s transformation, Beckel
and Nakhleh [5] in 1963 found a value K to substitute for l(l + 1) so that the third-order (but
not first-order) JWKB wavefunction went like rl+1. In 1974, Fröman and Fröman [6] extended
Beckel and Nakhleh’s idea to each order up to 9th. In 1984, Seetharaman and Vasan [7] found
the complete generalization to any specific order and showed moreover that in infinite order
K is exactly l(l + 1), i.e. no modification. Starting from a JWKB quantization of the angular
momentum, Robnik and Salasnich [8] in 1997 and Romanovski and Robnik [9] in 2000 derived
formulas equivalent to infinite-order Seetharaman and Vasan, from which Romanovski and
Robnik asserted that they had ‘ . . . thus resolved the controversies about the so-called ‘Langer
correction’ . . . , by explaining that by ignoring the ‘Langer correction’ and assuming the exact
value of the quantal angular momentum we indeed get the exact result of the energy spectrum
after calculating the terms of all orders and summing the WKB series’.

In 1999, Hainz and Grabert [10] discovered a completely different way to get the rl+1

behavior in all orders beyond zeroth by decomposing the centrifugal potential into a zeroth-
and first-order term with respect to h̄: h̄2l(l + 1) = L2 + h̄L. (At the end, L is set equal to h̄l.)
They concluded that no Langer modification was necessary.

In 2004, the biggest surprise of all came with Dahl and Schleich’s observation [11]
that the Kramers substitution in Langer’s derivation came entirely from the r1/2 = ex/2 in
ψ(r) = r1/2u(x), and that Langer’s exponential transformation was completely irrelevant.
Dahl and Schleich concluded insightfully that ‘ . . . Langer’s analysis may, in fact, be
considered as nothing more than a somewhat complicated way of solving (the radial wave
equation for r−1/2ψ(r)) by the JWKB method’. So simple a revelation took 67 years to
discover.

How can we unify and compare these seemingly incompatible solutions?

(l + 1/2)2 is correct only in first order; there is no generalizing effective potential.

l(l + 1) is correct in infinite order.

Intermediate values are correct in between first and infinite order.

(h̄l)2 + h̄(h̄l) is correct.
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(l + 1/2)2 is correct for all orders in the equation for r−1/2ψ(r).

The key idea is that there are two h̄’s: the h̄ in the radial kinetic energy term is the active,
expansion h̄; the h̄ buried in the centrifugal potential is passive, implicit, intrinsic, never
expanded. The solutions differ in how h̄ is split between expansion parameter and implicit
parameter. In consequence, there are many JWKB expansions, not one that the words ‘power
series in h̄’ would seem to imply.

Comparison of the various expansions is enormously simplified by a fortunate fact: in
each case the JWKB behavior at r = 0 can be solved exactly, before the two h̄’s are set equal.

In two-h̄ notation, ‘the generalization’ of the Kramers–Langer substitution is near trivial.

2. The original JWKB radial solution

The radial Schrödinger equation for a central potential V (r),(
−h̄2

2

d2

dr2
+ V (r) +

h̄2l(l + 1)

2r2
− E

)
ψ(r) = 0, (1)

has a JWKB solution, valid near r = 0, completely specified by

ψJWKB(r) = e
∫

qdr/h̄, (2)

q = q(0) + h̄q(1) + h̄2q(2) + · · · , (3)

q(0) = +

√
2

(
V (r) +

h̄2l(l + 1)

2r2
− E

)
, (4)

q(N) = −
(

dq(N−1)/dr +
N−1∑
k=1

q(k)q(N−k)

) /
(2q(0)). (5)

Seetharaman and Vasan [7] (and Romanovski and Robnik [9]) solved these equations near
r = 0 order-by-order to obtain

1

h̄
(q(0) + h̄q(1) + · · · + h̄2Nq(2N)) = 1

r

(
1

2
+

√
l(l + 1)

N∑
k=0

[4l(l + 1)]−k

( 1
2

k

))
+ O(r0). (6)

In infinite order, q/h̄ sums to (l + 1)/r + O(r0), and ψJWKB(r) = e
∫

qdr/h̄ ∼ rl+1.

2.1. Where’s the h̄?

The expansion for the exponent of r in ψJWKB is a series in [4l(l + 1)]−1 rather than in h̄. What
happened to the dependence on h̄? The answer is that the q(2N) depend implicitly on h̄ through
the definition of q(0) in (4) in such a way to cancel the explicit factor h̄2N−1. That cancellation
can be substantially clarified by notationally distinguishing the two h̄’s.

2.2. Two-h̄ notation and behavior at the origin

The JWKB solution (2)–(5) in fact solves the more general radial Schrödinger equation,(
−h̄2

2

d2

dr2
+ V (r) +

h̄2
i l(l + 1)

2r2
− E

)
ψ(r) = 0, (7)

3
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with (4) replaced by

q(0) = +

√
2

(
V (r) +

h̄2
i l(l + 1)

2r2
− E

)
, (8)

in which h̄i denotes an independent, implicit parameter that takes no part in generating the
expansion, but that will be set equal to h̄ to recover the physical problem at the end. This
notation merely codifies the currently practiced computational details of the JWKB solution
of the radial Schrödinger equation. The solution of (7) that is regular at the origin behaves not
like rl+1 (which it would if h̄i = h̄) but instead like

ψ(r) ∼ rλ, (9)

where the characteristic exponent λ = λ(h̄, h̄i) is the (in this case positive) root of the
(Frobenius) indicial equation

h̄2λ(λ − 1) = h̄2
i l(l + 1), (10)

λ(h̄, h̄i) = 1

2
+

1

h̄

√
h̄2

i l(l + 1) + h̄2/4 (11)

= 1

2
+

h̄i

h̄

√
l(l + 1)

∞∑
k=0

[
h̄2

h̄2
i 4l(l + 1)

]k ( 1
2

k

)
. (12)

Note that (i) the explicit expansion in powers of h̄ for the leading exponent of r at
the origin comes out of the indicial equation [12, 13]; (ii) when h̄i is set equal to h̄,
the termwise h̄-dependence drops out, obscuring the order-by-order identification of the
terms; (iii) the first-order JWKB analysis gives the first-order term in (12) correctly, and,
although it is not the correct value for the infinite-order solution of the physical problem,
it is not ‘in error’ in the sense of the solution whose characteristic exponent is given by
(10)–(12).

3. The Hainz and Grabert decomposition

Even though the original JWKB method is not in error, Kramers saw that different JWKB
approaches might be more useful. We see here that they differ in the partition between
expansion h̄ and implicit h̄i . The JWKB expansion discovered by Hainz and Grabert [10] fits
neatly into a two-h̄ notation when their ‘L’ is replaced by ‘lh̄i’. Hainz and Grabert’s radial
Schrödinger equation is, in two-h̄ notation,(

−h̄2

2

d2

dr2
+ V (r) +

h̄2
i l

2 + h̄h̄i l

2r2
− E

)
ψ(r) = 0. (13)

The centrifugal potential in (13) differs subtly from (7): h̄2
i l is replaced by h̄h̄i l, transferring

some of the passive h̄i-dependence of the potential to the expansion h̄. The difference in the
small-r behavior is pronounced:

ψ(r) ∼ rλ(h̄,h̄i ), λ(h̄, h̄i) = h̄i l + h̄

h̄
. (14)
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When h̄i is set equal to h̄, the behavior at the origin is rl+1 for all orders from the first. The
explicit JWKB equations (4) and (5) for q(0) and q(1), respectively, also change slightly:

q(0) = +

√
2

(
V (r) +

h̄2
i l

2

2r2
− E

)
(15)

q(1) =
(

h̄i l

r2
− dq(0)

dr

) /
(2q(0)) (16)

q(N) = −
(

dq(N−1)/dr +
N−1∑
k=1

q(k)q(N−k)

)/
(2q(0)), (N � 2). (17)

The practical advantage of Hainz and Grabert is the achievement of rl+1 behavior (for l > 0)
at first and all subsequent orders, versus the infinite series of (12), without a ‘contrived’
Kramers–Langer substitution.

4. Kramers–Langer–Beckel–Nakhleh–Fröman–Fröman and finite-Seetharaman–Vasan

At first glance, the Beckel–Nakhleh–Fröman–Fröman and finite-Seetharaman–Vasan idea
would appear to be the ultimate ad hoc single-finite-order ‘contrived’ substitution. But their
idea can be embedded (not uniquely) into a two-h̄ formalism that at infinite order gives an exact
solution when the two h̄’s are set equal, perhaps suggesting more than ad hoc significance.
The omnibus radial equation is(

−h̄2

2

d2

dr2
+ V (r) +

h̄2
i K

2r2
+

h̄2N+2

h̄2N
i

l(l + 1) − K

2r2
− E

)
ψ(r) = 0. (18)

At the origin, the regular solution of (18) goes like rλ(h̄,h̄i ), with

λ(h̄, h̄i) = 1

2
+

h̄i

√
K

h̄

√
1 +

h̄2

4h̄2
i K

+
h̄2N+2

h̄2N+2
i K

(l(l + 1) − K). (19)

No matter what value K has, if h̄i = h̄, then in infinite order λ = l + 1. In use, K is to
be evaluated as the root of

√
K

∑N
k=0(4K)−k

( 1
2
k

) − (
l + 1

2

)
, so chosen to make the 2N th and

(2N + 1)th JWKB wavefunctions behave like rl+1 at the origin when h̄i = h̄. (Of course, for
calculation of the JWKB wavefunction through order 2N + 1, the term proportional to h̄2N+2

in the potential makes no contribution.) The case N = 0 has K = (
l + 1

2

)2
(Kramers–Langer).

The case N = 1 is Beckel–Nakhleh. The cases N = 2 to N = 4 are Fröman and Fröman.
N > 4 is Seetharaman–Vasan.

5. Dahl and Schleich’s revelation

Langer sought to avoid both the finite end point and singular nature of the origin by moving
it to −∞ with the transformation, r = ex . To eliminate the consequent first-derivative d/dx

term he introduced the r1/2 factor, ψ(r) = r1/2u(x). As if by magic, the centrifugal potential
changed to h̄2(l + 1/2)2/2r2. Dahl and Schleich, who were familiar with radial Schrödinger
equations in arbitrary dimensions, recognized that the important step in Langer’s derivation

5
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was the r1/2, with analogy to a two-dimensional radial Schrödinger equation. That is, by
taking out the factor r1/2, (1) is transformed into(

−h̄2

2

(
d2

dr2
+

1

r

d

dr

)
+ V (r) +

h̄2(l + 1/2)2

2r2
− E

)
r−1/2ψ(r) = 0, (20)

which displays the Kramers expression for the centrifugal potential, albeit with a ‘two-
dimensional’ kinetic energy. Dahl and Schleich correctly point out that a JWKB expansion of
(20) is the direct way to get what Langer attempted indirectly through his transformed variable
x. There was no necessity to avoid dealing directly with r = 0. There was no necessity for
the Langer exponential transformation.

The two-h̄ form of Dahl and Schleich is(
−h̄2

2

(
d2

dr2
+

1

r

d

dr

)
+ V (r) +

h̄2
i (l + 1/2)2

2r2
− E

)
r−1/2ψ(r) = 0, (21)

At the origin, the regular solution goes like

ψ ∼ rλ(h̄,h̄i ), λ(h̄, h̄i) = 1

2
+

h̄i

h̄

(
l +

1

2

)
, (22)

which, with h̄i = h̄, gives the rl+1 behavior for ψ in zeroth and all subsequent orders.

6. Generalization of the Kramers–Langer modification

There is extra insight gained by putting Dahl and Schleich’s two-dimensional equation into
one-dimensional form. Multiply (21) by r1/2 and cancel. The result(

−h̄2

2

d2

dr2
+ V (r) +

h̄2
i (l + 1/2)2

2r2
− h̄2

8r2
− E

)
ψ(r) = 0 (23)

is the sought-after ‘generalization’ of the Kramers–Langer substitution. Contrasted with (7),
h̄2

i /8r2 has been moved into the implicit h̄i-dependent potential, and a compensating −h̄2/8r2

assigned to the expansion h̄. When Krieger and Rosenzweig [4] ruled an effective potential
impossible, they clearly did not consider an expansion-h̄ term. Once the dual role of h̄ in
the radial JWKB equation has been unmasked, this generalization is obvious. Note that the
N = 0 version of (18) given above is indeed just (23).

The explicit operational JWKB equations (4) and (5) for q(0) and q(2), respectively, change
slightly because of the h̄2 term in the potential:

q(0) = +

√
2

(
V (r) +

h̄2
i (l + 1/2)2

2r2
− E

)
(24)

q(2) = −
(

dq(1)/dr + q(1)2 +
1

4r2

) /
(2q(0)) (25)

q(N) = −
(

dq(N−1)/dr +
N−1∑
k=1

q(k)q(N−k)

)/
(2q(0)), (N �= 0, 2). (26)

Equation (23) and Dahl and Schleich’s (21) are completely equivalent, with one-to-one
correspondence of the term-by-term solutions. Equation (22) holds for both. A minor
advantage of (23)–(26) is their standard form.

6



J. Phys. A: Math. Theor. 42 (2009) 495206 T Koike and H J Silverstone

Table 1. Characteristic exponent λ(h̄, h̄i ) for the various radial JWKB wavefunctions.

JWKB variation λ(h̄, h̄i )

Original 1
2 + 1

h̄

√
h̄2

i l(l + 1) + h̄2/4

Hainz–Grabert h̄i l+h̄

h̄

Kramers–Langer–Beckel– 1
2 + h̄i

√
K

h̄

√
1 + h̄2

4h̄2
i
K

+ h̄2N+2

h̄2N+2
i

K
(l(l + 1) − K)

Nakhleh–Fröman–Fröman
and finite-Seetharaman–Vasan

Dahl–Schleich and 1
2 + h̄i

h̄

(
l + 1

2

)
generalized Kramers–Langer

7. Explicit JWKB expansion at r = 0

The effective potentials discussed here all have the form

Veff(r, h̄, h̄i) = V (r) +
ah̄2

i + bh̄ih̄ + ch̄2(h̄/h̄i)
2k

2r2
, (27)

where

a + b + c = l(l + 1), (28)

so that

Veff(r, h̄, h̄) = V (r) +
h̄2l(l + 1)

2r2
. (29)

Kawai and Takei [13] (proposition 3.6) have proven a general result whose restriction to
Veff(r, h̄, h̄i) is: if ah̄2

i + bh̄ih̄ + ch̄2 �= 0, and V (r) has at most a first-order pole at r = 0, then
q(r) has a simple pole at r = 0 with a residue equal to h̄ times the characteristic exponent
λ(h̄, h̄i). Explicitly,

q = q−1(h̄, h̄i)

r
+ O(r0), (30)

q−1(h̄, h̄i)

h̄
= 1

2
+

1

h̄

√
ah̄2

i + bh̄ih̄ + ch̄2(h̄/h̄i)2k +
h̄2

4
(31)

= λ(h̄, h̄i). (32)

Our analysis of the behavior of the JWKB radial solutions has been based on (30)–(32), and
the various λ are summarized in table 1. Seetharaman and Vasan [7], Romanovski and Robnik
[9] and Hainz and Grabert [10] all derived special cases of (30) and (31), JWKB-term by
JWKB-term.

That the JWKB expansion gives the correct behavior at r = 0 is not trivial. Consider, for
instance, the Coulomb potential. When l = 0 in both the original JWKB radial solution and
in the Hainz–Grabert solution, q does not have a simple pole at r = 0, but instead the singular,
square-root-type branch-point behavior characteristic of a linear turning point. In this case,
the JWKB expansion does not exhibit the correct rλ behavior at r = 0.

With respect to the l = 0 case, we note that Koike [14, 15] has developed the exact
JWKB analysis for potentials with simple poles, and he has applied it [16] to the Coulomb

7
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potential problem to cover both the original JWKB method and the additional cases that
q(0)2 = −2/r −2E and q(0)2 = −2E. In particular, the −2/r −2E case includes as a subcase
the l = 0 case of the original method.

8. Hydrogen atom energy levels

Knowing that one motivation for Kramers–Langer-like substitutions was to get the hydrogen
energies correct, the reader might be curious why energies have so far been absent from the
discussion. The reason is that the hydrogen atom JWKB energy levels (in units where charge
and mass have the value 1) are given by the unified formula,

E = − 1

2h̄2(nr + λ(h̄, h̄i))2
, (nr = 0, 1, 2, . . .), (33)

with the details carried by the λ(h̄, h̄i). The λ have already been determined from the indicial
equations by virtue of Aoki et al [12, 13] in (12), (14), (19) and (22), and in table 1. For
completeness, a brief derivation of (33) will now be sketched.

For hydrogen, V = −1/r . The JWKB solutions that individually satisfy the boundary
condition at 0 or at ∞ match, when continued by connection formulas to the classically
allowed region, if, and only if [17],∮

γ

qdr/h̄ = 2nrπ i, (nr = 0, 1, 2, . . .). (34)

For each case discussed above (except for the unmodified l = 0 case [16], which we omit),
there is a positive value of K for which

q(0)(r) =
√

Kh̄2
i

r2
− 2

r
− 2E , (35)

so that all the cases can be treated together. The two real zeros of q(0)(r) (the classical turning
points) lie on the positive r axis. γ denotes a closed path that encloses both of them, but not the
origin. We fix the phase so that q(0)(r) is real and positive between r = 0 and the left turning
point, which makes q(0)(r) real and negative between the right turning point and r = +∞.

From the Riccati equations generating q(N) and the choice of phase:

q(0) = −√−2E +
1

r
√−2E

+ O(r−2) as r → ∞, (36)

q(N) = O(r−N−1) as r → ∞, (N � 1). (37)

The only finite singularities of q(N) are poles at, or square-root-type branch cuts joining, the
two classical turning points, and a simple pole in q at the origin [12, 13]. Consequently,
each q(N) has a convergent Laurent series for |r| greater than the right turning point, and, via
sufficiently large R,

∮
γ

qdr/h̄ can be expressed as a sum of residues:∮
γ

q dr/h̄ =
∮

|r|=R

q dr/h̄ −
∮

|r|=1/R

q dr/h̄ (38)

= −2π i(residue of q/h̄ at ∞ + residue of q/h̄ at 0). (39)

The residue at 0 is λ(h̄, h̄i) as in (32). From (36) and (37), the residue at ∞ is −(h̄
√−2E)−1.

The energy formula (33) then follows from (34) and (39).
If the hydrogen atom is confined inside a spherical box, then (34) gains an order-dependent

phase shift, as discussed in a numerical study of the Hainz–Grabert decomposition by Sinha
[18], and (33) no longer holds. The authors thank the referee for this reference.
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9. The different expansions, numerical usefulness, and Borel summability

When h̄i �= h̄, the different JWKB expansions solve different radial Schrödinger equations and
represent different functions. The λ(h̄, h̄i) are all different. When h̄i = h̄, the different JWKB
expansions solve the same radial Schrödinger equation and represent the same function (e.g.,
the λ(h̄, h̄) all equal l + 1), but term-by-term they are different. Since JWKB expansions
are asymptotic, there are built-in practical restrictions to the length of partial sums and
numerical accuracy; the faster the initial convergence, the more useful the expansion. The
main motivation for the Kramers–Langer and subsequent substitutions is for more accurate
low-order partial sums.

We note that while the JWKB expansion in h̄ is a singular perturbation [19], the implicit
h̄i is not being used as a perturbation parameter, either regular or singular. It is merely a
spectator.

If these JWKB expansions are Borel summable [12, 16, 20–25], then each expansion
would be uniquely associated with an analytic function of h̄ (and h̄i). These different analytic
functions would coincide with the physical solution when h̄i = h̄. No JWKB expansion would
be ‘correct’ at the expense of the others, although certainly some may be more convenient than
others. Computational implementation of Borel summation would permit higher numerical
accuracy by inclusion of higher order terms than is possible with partial summation [26, 27].

10. Discussion

The Kramers–Langer substitution has been invaluable for first-order JWKB applications
of the radial Schrödinger equation, but its justification has nothing to do with the Langer
transformation. The

(
l+ 1

2

)2
in Langer’s ‘derivation’ is now known to have come from factoring

r1/2 out of the wavefunction; the simultaneous replacement of d2/dr2 by d2/dr2 + (1/r) d/dr

[11] would have ended the question of what next after first order. The question would instead
have become, why and how are the two JWKB expansions different. But that realization
was recent, and in the intervening years other JWKB expansions were devised, and the
original expansion was shown to give the correct behavior at the origin and the correct energy
eigenvalues in infinite order. The question then changes to why and how these several JWKB
expansions are different, yet represent the same solution of the radial Schrödinger equation.

The key to answering the question is the realization that h̄ has been dealt with ambiguously.
h̄ is both expansion parameter and fixed parameter in the definition of the centrifugal
contribution to an effective potential. By appropriate labeling of the implicit parameter
h̄i , the various JWKB radial expansions are seen to be solutions of different Schrödinger
equations that differ in the partition of the centrifugal potential between expansion h̄ and
implicit h̄i . In particular, the simplest way to understand the Kramers–Langer substitution in
an exact context is the radial Schrödinger Equation (23) in which h̄2l(l+1) has been partitioned
h̄2

i (l + 1/2)2 − h̄2/4. The various JWKB expansions all represent the same physical solution
when h̄i = h̄, although term-by-term the expansions are different.

Langer’s equations are not mathematically incorrect, but his explanations and
manipulations are misleading. For instance, when q(0) has a simple pole at r = 0, the
single-exponential JWKB wavefunctions behave correctly at the origin; Dunham’s matching
condition is valid; and nothing is gained by mapping the origin to −∞. In fairness, Langer
worked when the JWKB method was a bridge between classical and quantum mechanics,
when usefulness meant how well the low-order JWKB wavefunction matched the exact, when
the error estimates were the most important tool, when the dual role of h̄ hid beneath the
surface and when the Borel summation hid perhaps even deeper.
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